코헨의 카파(Cohen's kappa, κ) 점수는 두 관찰자가 어떤 항목을 분류할 때 얼마나 일치하는지, 그리고 그 일치도가 우연 때문이 아닌지를 평가하는 지표이다. 예를 들어, 두 사람이나 딥러닝 모델이 소셜 미디어 게시물을 검토하고 '적절함' 또는 '부적절함'으로 분류한다고 가정해 봤을 때, 두 평가자(또는 모델)가 얼마나 일치했는지를 확인하려면 코헨의 카파 점수를 계산할 수 있다. 공식: p_o: 관찰된 일치 비율, 즉 평가자들이 실제로 일치한 비율을 의미p_e: 우연히 일치할 가능성을 나타내는 기대 일치 비율 값의 해석:κ=1: 완전한 일치.κ=0: 우연과 동일한 수준의 일치.κ0: 우연보다 낮은 수준의 일치.보통 다음과 같이 해석한다:0.81–1.00: 거의 완벽한 일치.0.61–0.80..